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Abstract

This paper proposes a method for detecting temporal
changes of the three-dimensional structure of an outdoor
scene from its multi-view images captured at two separate
times. For the images, we consider those captured by a
camera mounted on a vehicle running in a city street. The
method estimates scene structures probabilistically, not de-
terministically, and based on their estimates, it evaluates
the probability of structural changes in the scene, where the
inputs are the similarity of the local image patches among
the multi-view images. The aim of the probabilistic treat-
ment is to maximize the accuracy of change detection, be-
hind which there is our conjecture that although it is difficult
to estimate the scene structures deterministically, it should
be easier to detect their changes. The proposed method
is compared with the methods that use multi-view stereo
(MVS) to reconstruct the scene structures of the two time
points and then differentiate them to detect changes. The
experimental results show that the proposed method outper-
forms such MVS-based methods.

1. Introduction

This paper considers a problem of detecting temporal
changes in the three-dimensional structure of a scene, such
as an urban area, from a pair of its multi-view images cap-
tured at two separate times. For the images, we consider
those captured by a camera mounted on a ground vehicle
while running it on city streets. The underlying motivation
is to develop a method for automatically detecting the tem-
poral changes of a whole city when it changes its structure
in a relatively short time period because of disasters such as
earthquakes and tsunamis. Its applications include quickly
grasping the damages of a city caused by an earthquake by
simply running a vehicle with a camera in the area (assum-
ing its pre-earthquake images are also available) and visual-
izing the processes of short-time recovery or long-time re-
construction from them by similarly capturing images for
multiple times.

I1 I2

I′1 I′2
Figure 1. A pair of two images of the same scene taken at two sep-
arate times. (These are trimmed from omni-directional images.)

Exactly for the latter purpose, we are creating the im-
age archives of the urban and residential areas damaged by
the tsunami caused by the earthquake happened in Japan
in March 2011. We have been periodically (every three to
four months) capturing their images using a vehicle having
an omni-directional camera on its roof. The target area is
500km long along the northern-east coastal line in Japan,
and the image data accumulated so far amount to about 20
terabytes. Figure 1 shows examples of these images, which
are a pair of two images of the same scene captured three
months apart.

To achieve the goal of detecting temporal 3D scene
changes from these images, a naive approach would be to
use Multi-View Stereo (MVS) [5, 16] to reconstruct the 3D
shapes of the area at different time points from their im-
ages and differentiate them to detect changes in 3D struc-
ture. Considering the recent success of MVS, this approach
is seemingly promising. However, apart from the recon-
struction from aerial imagery, which has achieved great suc-
cess lately, it is still a difficult task to accurately recon-
struct the structure of a scene from its images taken by a
ground vehicle-mounted camera. Figure 2 shows the re-
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Figure 2. A result of applying PMVS2 [5] to our images that are
obtained by a vehicle-mounted omni-directional camera at every
few meters along a street. The camera poses needed for running
PMVS2 are obtained by performing SfM.

sults of applying PMVS2, one of the state-of-the-art, to our
images. It is observed from the results that there are a lot
of missing parts in the reconstruction. (Some of the exist-
ing ones are also incorrectly reconstructed, although they
cannot be judged from this picture alone.) These may be
attributable to several reasons, such as the large depth vari-
ations which are contrasted with aerial imagery, the limited
variety and number of camera poses (i.e., the viewpoints
are on a straight line along the vehicle path), and the insuf-
ficient scene textures. The differentiation of the two recon-
structions thus obtained does not give good results, as will
be shown later.

In this paper, we propose another approach to this prob-
lem. The basic idea is that we want to know not the scene
structure of each time point but their changes; thus, we for-
mulate the problem so as to estimate them directly from the
images. The core of the formulation, which distinguishes
it from the above MVS-based one, is a probabilistic treat-
ment of scene structures. To be specific, we estimate the
scene structure (specifically, the scene depths from a se-
lected viewpoint) not deterministically but probabilistically;
namely, we obtain not a point estimate but a probabilis-
tic density of depths; we then estimate whether the scene
changes or not by integrating the obtained depth density in
such a way that their ambiguity is well reflected in the final
estimates. The overall estimation is performed in a prob-
abilistic framework, where the inputs are the similarity of
the local image patches among the multi-view images. The
camera poses are necessary in this estimation and are esti-
mated in advance by performing SfM for the images of each
time point followed by registration of the reconstructions.

Our aim behind this probabilistic treatment of scene
structures is to maximize the accuracy of detecting scene
changes. If scene structure has to be deterministically deter-
mined even though observations give only ambiguous infor-
mation, the two reconstructions will inevitably have errors,
so do the estimated scene changes obtained by differentiat-
ing them. Our approach could reduce such errors by appro-
priately considering the ambiguity of scene structure. As a

by-product, we can also reduce the computational time; it
might be a waste to spend large computational resources to
compute scene structures, as we need only their changes.

The paper is organised as follows. In Section 2, we
summarize the related work. Section 3 explains how data
are processed from image capture to change detection. In
Section 4, we presents a novel algorithm for change detec-
tion. Section 5 shows several experimental results. Section
6 concludes this study.

2. Related work
Many researches have been conducted to develop meth-

ods for detecting temporal changes of a scene. However,
most of them consider the detection of 2D changes (i.e.,
those only in image appearance), whereas we want to de-
tect changes in 3D structure of scenes. Thus, there are only
a limited number of studies that could potentially be applied
to our problem.

The standard problem formulation of 2D change detec-
tion [12, 14] is such that an appearance model of a scene is
learned using its n images and then based on n + 1st image,
it is determined whether a significant change has occurred.
Most of the studies of 3D change detection [3, 8, 7, 12, 18]
follow a similar formulation; namely, a model of the scene
in a “steady state” is built and a newly-captured image(s) is
compared against it to detect changes.

In [12], targeting at aerial images capturing a ground
scene, a method is proposed that learns a voxel-based ap-
pearance model of a 3D scene from its 20–40 images. Its
improved method to minimize storage space is presented in
[3]. In [8], a method is proposed that detects scene changes
by estimating the appearance or disappearance of line seg-
ments in space. All of these studies create an appearance
model of the target scene from a sufficiently large number
of images. Such an approach is fit for aerial or satellite im-
agery or the case of stationary cameras, but is not fit for the
images taken in our setting.

Several studies assume that a 3D model of the scene is
given by using other sensors or methods than the images
used for the change detection. In [7], assuming that the 3D
model of a building is given, the edges extracted in its aerial
images are matched with the projection of the 3D model to
detect changes. The recent study of Taneja et al. [18] is
of the same type. Their method detects temporal changes
of a scene from its multi-view images, and thus it is close
to ours from an application point of view. However, their
motivation is to minimize the cost needed for updating the
3D model of a large urban area, and thus, a dense 3D model
of the target scene is assumed to be given.

Our method differs from all of these in formulation of
the problem. In our formulation, the changes of a scene are
detected from two sets of images taken at two different time
points. The two image sets are “symmetric” in the sense
that they have similar sizes and are of the same nature. We



Omnidirectional images

��

�

�

, �

�

�

⋯� ��

�

�

�

, �

�

�

�

⋯�

��

�

, �

�

⋯�

��

�

�

, �

�

�

, ⋯ �

Perspective images

Registration

SfM SfM

��

�

, �

�

⋯�

��

�

�

, �

�

�

, ⋯ �

Change detection

Camera poses

Cropping

etc.

Figure 3. Data flow diagram; see texts for explanation.

do not assume a dense 3D model of the scene to be given,
or do not create one from the input images themselves, as it
is difficult for the images captured from a ground vehicle-
mounted camera; see Fig. 1. To do so, it is necessary to
have a large number of multi-view images captured from a
variety of viewpoints [1, 2, 13, 17, 22, 24], or to use a range
sensor.

In the sense that the input data are symmetric, ours might
be close to the study of Schindler and Dellaert [15]. They
propose a method that uses a large number of images of
a city that are taken over several decades to perform sev-
eral types of temporal inferences, such as estimating when
each building in the city was constructed. However, besides
the necessity for a large number of images, their method
represents scene changes only in the form of point clouds
associated with image features.

3. From image acquisition to change detection
3.1. Image acquisition

As mentioned earlier, we have been periodically ac-
quiring the images of the tsunami-devastated areas in the
northern-east coast of Japan. The images are captured by
a vehicle having an omni-directional camera (Ladybug3 of
Point Grey Research Inc.) on its roof. An image is captured
at about every 2m on each city street to minimize the to-
tal size of the data as well as to maintain the running speed
of the vehicle under the constraint of the frame rate of the
camera.

The goal of the present study is to detect the temporal
changes of a scene from its images thus obtained at two
separate times. Figure 3 shows how the input images are
processed. For computational simplicity, our algorithm for
change detection takes as inputs not the omni-directional
images but the perspective images cropped from them. The
algorithm also needs the relative camera poses of these im-
ages. To obtain them, we perform SfM for each sequence
followed by registration of the two reconstructions, which
are summarized below.

3.2. Estimation of relative camera poses

The algorithm shown in the next section uses only sev-
eral perspective images to detect changes of a scene. For the

(a) (b)
Figure 4. Registration of 3D reconstructions from two image se-
quences taken at different times. (a) Initial estimate. (b) Final
result.

reason of accuracy, however, to obtain their camera poses,
we perform SfM and registration not with these perspective
images alone but with a more number (e.g., 100 viewpoints)
of omni-directional images that contain these viewpoints.
To be specific, we do this in the following two steps. First,
we perform SfM independently for each sequence. We em-
ploy a standard SfM method [6, 11, 21] with extensions
to deal with omni-directional images [20]. Next, we reg-
ister the two 3D reconstructions thus obtained as follows.
We first roughly align the two reconstructions with a simi-
larity transform; putative matches of the feature points are
established between the two sequences based on their de-
scriptor similarity, for which RANSAC is performed [4].
For the aligned reconstructions, we reestablish the corre-
spondences of feature points by incorporating a distance
constraint. Using the newly established correspondences
along with original correspondences within each sequence,
we perform bundle adjustment for the extended SfM prob-
lem, in which the sum of the reprojection errors for all the
correspondences is minimized. Figure 4(a) shows the initial
rough alignment of the two reconstructions and (b) shows
the final result.

4. Detection of temporal changes of a scene
4.1. Problem

Applying the above methods to two sequences of omni-
directional images, we have the camera pose of each image
represented in the same 3D space. Choosing a portion of
the scene for which we want to detect changes, we crop and
warp the original images to have two sets of perspective
images covering the scene portion just enough, as shown in
Fig. 5. In this section, we consider the problem of detecting
scene changes from these two sets of multi-view perspective
images. For simplicity of explanation, we mainly consider
the minimal case where there are two images in each set.

4.2. Outline of the proposed method

We denote the first set of images of time t by I = {I1, I2}

and the second set of time t′ by I′ = {I′1, I
′
2}. As shown in

Fig. 6, one of the two image sets, I, is used for estimating
the depths of the scene, and the other image set I′ is used



Figure 5. Geometry of two sets of multi-view perspective images
taken at different times. For each pixel x1 of I1, the probability that
the scene depth has changed is estimated.
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Figure 6. Outline of the proposed method. The probability density
of the scene depth at a point x1 of I1 is estimated from I1 and
I2. This is combined with the comparison of the local patches of
I′1 and I′2 to estimate the probability that the scene depth changes
at x1 between t and t′. Note that the patches are compared only
among the images taken at the same time. The broken lines in the
images indicate epipolar lines associated with x1.

for estimating changes of the scene depths. (These may be
swapped.) Choosing one image from I, say I1, which we
call a key frame here, the proposed method considers the
scene depth at each pixel of I1 and estimates whether or not
it changes from t to t′. The output of the method is the
probability of a depth change at each pixel of I1.

For the first image set I1, its images are used to estimate
the depth map of the scene at t. To be specific, not the value
of the depth d but its probabilistic density p(d) is estimated.
For the other set I′, a spatial point having depth d at a cer-
tain pixel of the key frame I1 is projected onto I′1 and I′2,
respectively, as shown in Fig. 5, and then the similarity s′d
of the local patches around these two points is computed.
The higher the similarity is, the more the spatial point is
likely to belong to the surface of some object in the scene at
t′, and the inverse is true as well. The similarity s′d is com-
puted for each depth d, which gives a density function of d
that is similar to p(d).

By combining these two estimates, p(d), and s′d, the pro-

posed method calculates the probability of a depth change.
In this process, the change probability evaluated for each
depth d is integrated over d to yield the overall probability
of a depth change. This makes it unnecessary to explicitly
determine the scene depth neither at t nor t′. This is a central
idea of the proposed method.

It should also be noted that our method evaluate the patch
similarity only within each image set of I1 and I2. This
makes it free from the illumination changes between the
time points of the image capture.

4.3. Estimation of the density of scene depths
To estimate the density of scene depths, we use the simi-

larity of local patches in the images, as is done in multi-view
stereo [5, 9, 13, 16, 23]. By dividing the inverse depth in a
certain range from near to far away into n discrete values,
we denote the depth by indexes d = 1, . . . , n. For a point
x1 of I1, we denote the projection onto I2 of a spatial point
lying on the ray of x1 and having depth d by x2(d). The
difference between the local patches around x1 and x2(d) is
evaluated by the similarity (rigorously dissimilarity) func-
tion

sd(x1) =
1

3|W|

∑
r,g,b

∑
δx∈W

∣∣∣I1(x1 + δx) − I2(x2(d) + δx)
∣∣∣, (1)

where W defines the size of the local patches. (We used
5 × 5 pixels in the experiment.)

Although sd for correctly matched points will ideally
be 0, it will not in practice because of image noise, shape
changes of the patches, etc. Having examined sd for cor-
rectly matched points, we found that its distribution is well
approximated by a half Laplace distribution; see the supple-
mentary note for details. Then, we model p(s) as

p(d) ∝ exp (−sd/σ), (d = 1, . . . , n). (2)

The probabilities [p(d = 1), . . . , p(d = n)] are obtained by
normalizing the above so that their sum will be 1. We set
σ = 1.5 in the experiments based on the statistics of real
images; see the supplementary note.

4.4. Estimating probabilities of scene changes
We introduce a binary variable c to represent whether or

not the scene depth at a pixel x1 of the key frame I1 has
changed from t to t′; c = 1 indicates it has changed and
c = 0 it has not.

Suppose projecting onto I′1 and I′2 a spatial point lying on
the ray of x1 and having depth d, as shown in Fig. 5. We de-
note these two points by x′1(d) and x′2(d), respectively. Sim-
ilarly to Eq. (1), the difference of the local patches around
these two points is calculated as

s′d =
1

3|W|

∑
r,g,b

∑
δx∈W

∣∣∣I′1(x′1(d) + δx) − I′2(x′2(d) + δx)
∣∣∣ (3)



Computing s′1, ..., s
′
n for the depths d = 1, ..., n from

the images, we consider evaluating the following posterior
probability given s′1, ..., s

′
n as observations:

p(c = 1|s′1, ..., s
′
n). (4)

This directly gives the probability that the scene changes
its structure at the pixel x1 of I1. This can be rewritten by
Bayes’ rule as

p(c = 1|s′1, ..., s
′
n) =

p(s′1, ..., s
′
n|c = 1)p(c = 1)

p(s′1, ..., s
′
n)

. (5)

The denominator is given by

p(s′1, ..., s
′
n) = p(s′1, ..., s

′
n|c = 1)p(c = 1)

+ p(s′1, ..., s
′
n|c = 0)p(c = 0). (6)

Here, the term p(c = 1) is the prior probability that the
scene depth changes at this pixel. We set a constant number
to p(c = 1). Its inverse p(c = 0) is given by p(c = 0) =

1 − p(c = 1).

We next evaluate p(s′1, ..., s
′
n|c = 1) and p(s′1, ..., s

′
n|c =

0). We assume that s′d(d = 1, . . . , n) is independent of each
other and that

p(s′1, ..., s
′
n|c = 1) =

n∏
d=1

p(s′d |c = 1), (7a)

p(s′1, ..., s
′
n|c = 0) =

n∏
d=1

p(s′d |c = 0). (7b)

To further analyze p(s′d |c = 1) and p(s′d |c = 0), we introduce
a binary variable δd to represent whether or not the scene
depth (at x1 of I1 at time t) is d, that is, whether or not the
spatial point having depth d belongs to the surface of some
object at t; δd = 1 indicates this is the case and δd = 0
otherwise. Using δd, p(s′d |c = 1) can be decomposed as
follows:

p(s′d |c = 1) = p(s′d, δd = 1|c = 1) + p(s′d, δd = 0|c = 1)
= p(s′d |δd = 1, c = 1)p(δd = 1)

+ p(s′d |δd = 0, c = 1)p(δd = 0), (8)

where p(δd = 1|c = 1) = p(δd = 1) and p(δd = 0|c = 1) =

p(δd = 0) are used, which is given by the independence of
δd and c. The density p(s′d |c = 0) can be decomposed in a
similar way. The term p(δd = 1) in Eq. (8) is the probability
that the scene depth is d, and thus it is equivalent to p(d) that
has been already obtained; thus, p(δd = 1) = p(d). The term
p(δd = 0) is given by p(δd = 0) = 1 − p(δd = 1) = 1 − p(d).

To evaluate Eq. (8), we need to further consider the
conditional densities p(s′d |δd = 1, c = 1) and p(s′d |δd =

0, c = 1). There are four combinations of (δd, c): (0, 0),
(0, 1), (1, 0), and (1, 1). Each combination can be related to

Table 1. Values of δ′d for different pairs of c and δd. The definition
of the variables is as follows: c = 1 indicates the scene depth
changes from t to t′ and c = 0 otherwise; δd = 1 indicates the
scene depth is d at time t and δd = 0 otherwise; δ′d is the same as
δd but not at t but t′.

HHH
HHc
δd 0 1

0 0 1

1 0 or 1 0

whether the scene depth is d at time t′ or not. For example,
(δd, c) = (1, 0) means that the scene depth is d at time t and
remains so at t′; (δd, c) = (1, 1) means that the scene depth
is d at t and is not so at t′. Let δ′d be a binary variable indi-
cating whether or not the scene depth is d at time t′; δ′d = 1
if the scene depth is d at t′ and δ′d = 0 otherwise. Table 1
shows the values of δ′d for all the combinations. Note that
the combination (δd, c) = (0, 1), which means that the scene
depth is not d at t and changes at t′, does not fully constrain
δ′d. Thus we denote it by δ′d is either 0 or 1.

From the table, we can rewrite the conditional densities
for the four combinations as

p(s′d |δd = 0, c = 0) = p(s′d |δ
′
d = 0), (9a)

p(s′d |δd = 0, c = 1) = p(s′d |δ
′
d = 0 or 1), (9b)

p(s′d |δd = 1, c = 0) = p(s′d |δ
′
d = 1), (9c)

p(s′d |δd = 1, c = 1) = p(s′d |δ
′
d = 0). (9d)

The densities on the right hand side can be modelled as fol-
lows. When δ′d = 0, which means the scene depth is not
d (at t′), s′d measures the similarity between the patches of
two different scene points. Thus, we model p(s′d |δ

′
d = 0) by

a uniform distribution and set

p(s′d |δ
′
d = 0) = const. (10)

When δ′d = 1, on the other hand, s′d measures the simi-
larity between the patches of the same scene point. Then,
this is exactly the same situation as sd for correctly matched
points. Thus, using the same half Laplace distribution as sd,
we set p(s′d |δ

′
d = 1) ∝ exp

(
−s′d/σ

′
)
. In the experiments, we

set σ′(= σ) = 1.5.
The conditional density p(s′d |δd = 0, c = 1) can be fac-

torized as follows:

p(s′d |δd = 0, c = 1)

= p(s′d |δ
′
d = 0, δd = 0, c = 1)p(δ′d = 0|δd = 0, c = 1)

+ p(s′d |δ
′
d = 1, δd = 0, c = 1)p(δ′d = 1|δd = 0, c = 1). (11)

The probability p(δ′d = 1|δd = 0, c = 1) is difficult to
quantify, but, fortunately, it should be small. Thus, we ap-
proximate p(s′d |δd = 0, c = 1) ≈ p(s′d |δ

′
d = 0, δd = 0, c = 1).

Using the derived equations and the introduced models,



the conditional probability p(c = 1|s′1, . . . , s
′
n) can be eval-

uated for each x1. We may judge that if the probability is
higher than 0.5, the scene depth has changed at the pixel,
and it has not changed, otherwise.

We have considered the minimal case of using a pair of
images for each time. When two or more pairs of images are
available, we can use them to improve estimation accuracy.
In the experiments, we use a naive method, which integrates
the observations from the multiple image pairs based on an
assumption that they are independent of each other.

5. Experimental results
We conducted several experiments to examine the per-

formance of the proposed method. For the experiments, we
chose a few scenes and their images from our archives men-
tioned in Sec.3.1. The chosen images are taken at one and
four months after the tsunami1. Typically, a lot of tsunami
debris appear in the earlier images, whereas they disappear
in the later ones because of recovery operations. We wish
to correctly identify their disappearance in the later images.

The proposed method uses two or more images for each
time. In the experiment, we use four images of consecutive
viewpoints for each time, i.e., three pairs of images. These
are perspective images (cropped from omni-directional im-
ages) of 640 × 480 pixel size. The disparity space is dis-
cretized into 128 blocks (n = 128). Assuming that there
is no prior on the probability of scene changes, we set
p(c = 1) = 0.5. It is noted, though, that in the experi-
ments, the results are very robust to the choice of this value;
see the supplementary note for details. These are fixed for
all the experiments.

5.1. Compared methods

We compared our method with MVS-based ones, which
first reconstruct the structures of a scene based on MVS and
differentiate them to obtain scene changes. We consider two
MVS algorithms for 3D reconstruction, PMVS2 [5] and a
standard stereo matching algorithm for it.

In the former case, PMVS2 is applied to a sufficiently
long sequence of images (e.g., 100 viewpoints) covering the
target scene. Our omni-directional camera consists of six
cameras and records six perspective images at each view-
point. All these six images per viewpoint are inputted to
PMVS2 after distortion correction. PMVS2 outputs point
clouds, from which we create a depth map viewed from the
key frame. This is done by projecting the points onto the
image plane in such a way that each point occupies an im-
age area of 7 × 7 pixels. Two depth maps are created for
the two time points and are differentiated to obtain scene
changes. We call the overall procedure PMVS2.

1The data used in this study (the omni-directional image sequences of
the chosen streets and our estimates of their camera poses) are available
from our web site: http://www.vision.is.tohoku.ac.jp/us/download/.

In the latter case, a standard stereo matching algorithm
is used, in which a MRF model is assumed that is defined
on the four-connected grid graph; the local image simi-
larity is used for the data term and a truncated l1 norm
fi j = max(|di − d j|, dmax/10) is used for the smoothness
term. We use two types of similarity; one is the SAD-based
one (Eq. (1) and Eq. (3)) that is used in our method, and
the other is the distance between SIFT descriptors at the
corresponding points [19]. Then, the optimization of the
resulting MRF models is performed using graph cuts [10].
Similarly to the above, two depth maps are computed and
are differentiated to obtain scene changes. We call these
procedures patch-MVS and SIFT-MVS.

5.2. Comparison of the results

Figure 7 shows the results for a scene. From left to
right columns, the input images with a hand-marked ground
truth, the results of the proposed method, PMVS2, Patch-
MVS, and SIFT-MVS, respectively. For the proposed
method, besides the detected changes, the change proba-
bility p(c = 1| · · · ) is shown as a grey-scale image; its bi-
narized version by a threshold p > 0.5 gives the result of
change detection. For each of the MVS-based methods, be-
sides the result, two estimated depths maps for the different
times are shown. The detection result is their differences.
Whether the scene changes or not is judged by whether the
difference in its disparity is greater than a threshold. We
chose 6 (disparity ranges in [0 : 127]) for the threshold,
as it achieves the best results in the experiments. The red
patches in the depth maps of PMVS2 indicate that there is
no reconstructed point in the space.

Comparing the result of the proposed method with the
ground truth, it is seen that the proposed method can cor-
rectly detect the scene changes, i.e., the disappearance of
the debris and the digger; the shape of the digger arm is
extracted very accurately. There are also some differences.
The proposed method cannot detect the disappearance of
the building behind the digger and of the thin layer of sands
on the ground surface. The former is considered to be be-
cause the building is occluded by the digger in other view-
points. The proposed method does not have a mechanism of
explicitly dealing with occlusions but using multiple pairs
of images, which will inevitably yield some errors. For the
layer of sands, its structural difference might be too small
for the proposed method to detect it.

The results of the MVS-based methods are all less accu-
rate than the proposed method. As these methods differenti-
ate the two depth maps, a slight reconstruction error in each
will results in a false positive. Thus, even though their es-
timated depths appear to capture the scene structure mostly
well, the estimated scene changes tends to be worse than the
impression we have for each depth map alone.

There are in general several causes of errors in MVS-
based depth estimation. For example, MVS is vulnerable



to objects without textures (e.g., the ground surface in this
scene). PMVS2 does not reconstruct objects that do not
have reliable observations, e.g., textureless objects. As the
proposed method similarly obtains depth information from
image similarity, the same difficulties will have bad influ-
ence on the proposed method. However, it will be min-
imized by the probabilistic treatment of the depth map;
taking all probabilities into account, the proposed method
makes a binary decision as to whether a scene point changes
or not.

We obtain precision and recall for each result using the
ground truth and then calculate its F1 score; it is 0.76, 0.59,
0.53, 0.71, in the order of Fig. 7, respectively.

Figure 8 shows results for other images. From top to bot-
tom rows, I′, the ground truths, the results of the proposed
method, and those of SIFT-MVS are shown, respectively. It
is seen that the proposed method produces better results for
all the images. This is quantitatively confirmed by their F1
scores which are shown in Table 2.

6. Conclusions

We have described a method for detecting temporal
changes of the 3D structure of an outdoor scene from its
multi-view images taken at two separate times. These im-
ages are captured by a vehicle-mounted camera running in
a city street. The method estimates the scene depth proba-
bilistically, not deterministically, and judges whether or not
the scene depth changes in such a way that the ambiguity
of the estimated scene depth is well reflected in the final
estimates. We have shown several experimental results, in
which the proposed method is compared with MVS-based
methods, which use MVS to reconstruct the scene structures
and differentiate two reconstructions to detect changes. The
experimental results show that the proposed method outper-
forms the MVS-based ones.

It should be noted that our method estimates scene
changes independently at each image pixel; no prior on the
smoothness or continuity of scene structures is used. This is
contrasted with MVS, which always uses some prior about
them. Such priors, which have been confirmed to be very ef-
fective in dense reconstruction, are in reality a double-edged
sword. We may say that the reason why MVS needs such
priors is because it has to deterministically determine scene
structures even if only insufficient observations are avail-
able. Considering that our method achieves better results
(even) without such priors, it could be possible that such
priors do more harm than good as far as change detection is
concerned.
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Figure 7. Results of the proposed method and the three MVS-based ones for a scene. From left to right columns, the input images and the
ground truth, the results of the proposed methods, and those of PMVS2, Patch-MVS, and SIFT-MVS, respectively. The third row shows
the detected changes. The numbers in their captions are the F1 scores representing accuracy of the detection.
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Figure 8. Results for other images. From top to bottom rows, I′, hand-marked ground truths, results of the proposed method, and those of
SIFT-MVS.

Table 2. F1 scores of the detected changes shown in Fig. 8.
(a) (b) (c) (d) (e) (f) (g) Average

Proposed 0.88 0.67 0.77 0.85 0.82 0.91 0.92 0.83
PMVS2 0.49 0.30 0.65 0.66 0.56 0.58 0.66 0.56
Patch-MVS 0.66 0.28 0.69 0.60 0.70 0.65 0.77 0.62
SIFT-MVS 0.68 0.41 0.73 0.71 0.60 0.67 0.73 0.65


